A Comparative Study of Meta-heuristic Algorithms for Solving Quadratic Assignment Problem
نویسندگان
چکیده
منابع مشابه
A Comparative Study of Meta-heuristic Algorithms for Solving Quadratic Assignment Problem
Quadratic Assignment Problem (QAP) is an NPhard combinatorial optimization problem, therefore, solving the QAP requires applying one or more of the meta-heuristic algorithms. This paper presents a comparative study between Meta-heuristic algorithms: Genetic Algorithm, Tabu Search, and Simulated annealing for solving a real-life (QAP) and analyze their performance in terms of both runtime effici...
متن کاملHybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملMeta-heuristic algorithms for solving a fuzzy single-period problem
Single-period problem (SPP) is a classical stochastic inventory model that has become very popular recently. In this research, we developed a SPP with fuzzy environment. The demand of each product is considered as LR-fuzzy variables (ranking fuzzy numbers based on the left and right deviation degrees), and multiple constraints (including service level, batch order, budget, space and upper limit...
متن کاملSolving a Multi-Item Supply Chain Network Problem by Three Meta-heuristic Algorithms
The supply chain network design not only assists organizations production process (e.g.,plan, control and execute a product’s flow) but also ensure what is the growing need for companies in a longterm. This paper develops a three-echelon supply chain network problem including multiple plants, multiple distributors, and multiple retailers with amulti-mode demand satisfaction policy inside of pro...
متن کاملA comparative study of two meta-heuristic algorithms in optimizing cost of reinforced concrete segmental lining
In this work, we tried to automatically optimize the cost of the concrete segmental lining used as a support system in the case study of Mashhad Urban Railway Line 2 located in NE Iran. Two meta-heuristic optimization methods including particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) were presented. The penalty function was used for unfeasible solutions, and the seg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2014
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2014.050101