A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Properties of Smoothing Parameter Selection in Spline Smoothing

The asymptotic properties of smoothing parameter estimates for smoothing splines are developed. We consider a variety of estimates including Generalized Cross Validation, Generalized Maximum Likelihood, and more generally Type II ML estimates and the properties of the marginal posterior mode. Under the usual Sobolov space frequentist assumptions on the function to be estimated , consistency and...

متن کامل

Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method

The (modified) Newton method is adapted to optimize generalized cross validation (GCV) and generalized maximum likelihood (GML) scores with multiple smoothing parameters. The main concerns in solving the optimization problem are the speed and the reliability of the algorithm, as well as the invariance of the algorithm under transformations under which the problem itself is invariant. The propos...

متن کامل

the evaluation and comparison of two esp textbooks available on the iranian market for teaching english to the students of medicine

abstract this study evaluated and compared medical terminology and english for the students of medicine (ii) as two representatives of the textbooks available on the iranian market for teaching english to the students of medicine. this research was performed on the basis of a teacher’s and a number of students’ attitudes and the students’ needs analysis for two reasons: first, to investigate...

15 صفحه اول

Generalized profiling estimation for global and adaptive penalized spline smoothing

Wepropose the generalized profilingmethod to estimate themultiple regression functions in the framework of penalized spline smoothing, where the regression functions and the smoothing parameter are estimated in two nested levels of optimization. The corresponding gradients and Hessian matrices are worked out analytically, using the Implicit Function Theorem if necessary, which leads to fast and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1985

ISSN: 0090-5364

DOI: 10.1214/aos/1176349743