A Comparison Theorem for Elliptic Differential Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Liouville Theorem for Non Local Elliptic Equations

We prove a Liouville-type theorem for bounded stable solutions v ∈ C(R) of elliptic equations of the type (−∆)v = f(v) in R, where s ∈ (0, 1) and f is any nonnegative function. The operator (−∆) stands for the fractional Laplacian, a pseudo-differential operator of symbol |ξ|.

متن کامل

A Qualitative Phragmèn-Lindelöf Theorem for Fully Nonlinear Elliptic Equations

We establish qualitative results of Phragmèn-Lindelöf type for upper semicontinuous viscosity solutions of fully nonlinear partial differential inequalities of the second order in general unbounded domains of IR.

متن کامل

A Quantitative Comparison Theorem for Nonlinear Equations

In the present paper we establish a quantitative comparison theorem for positive solutions of the following initial value problems 8 < : (p 1 (r)(u)ju 0 j m?2 u 0) 0 + q 1 (r)f(u) = 0 u(0) = u 0 ; u 0 (0) = 0 and 8 < : (p 2 (r)(v)jv 0 j m?2 v 0) 0 + q 2 (r)f(v) = 0 v(0) = v 0 ; v 0 (0) = 0 with r > 0 and m > 1, and also show some applications of the theorem to the non-existence problem of posit...

متن کامل

Interface Relaxation Methods for Elliptic Differential Equations

A population of eight non-overlapping domain decomposition methods for solving elliptic differential equations are viewed and formulated as iterated interface relaxation procedures. A comprehensive review of the underlying mathematical ideas and the computational characteristics is given. The existing theoretical results are also reviewed and high level descriptions of the various algorithms ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1966

ISSN: 0002-9939

DOI: 10.2307/2035377