A complete classification of simultaneous blow-up rates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A complete classification of simultaneous blow-up rates

We study the simultaneous blow-up rates of a system of two heat equations coupled through the boundary in a nonlinear way. We complete the previous known results by covering the whole range of possible parameters.

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-up rates for the general curve shortening flow

The blow-up rates of derivatives of the curvature function will be presented when the closed curves contract to a point in finite time under the general curve shortening flow. In particular, this generalizes a theorem of M.E. Gage and R.S. Hamilton about mean curvature flow in R2.

متن کامل

Classification of blow-up with nonlinear diffusion and localized reaction

We study the behaviour of nonnegative solutions of the reaction-diffusion equation    ut = (u)xx + a(x)up in R× (0, T ), u(x, 0) = u0(x) in R. The model contains a porous medium diffusion term with exponent m > 1, and a localized reaction a(x)up where p > 0 and a(x) ≥ 0 is a compactly supported function. We investigate the existence and behaviour of the solutions of this problem in dependenc...

متن کامل

a note on critical point and blow-up rates for singular and degenerate parabolic equations

in this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,t)$, subject to nulldirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. the optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2006

ISSN: 0893-9659

DOI: 10.1016/j.aml.2005.08.007