A data-driven approach to forecasting ground-level ozone concentration
نویسندگان
چکیده
The ability to forecast the concentration of air pollutants in an urban region is crucial for decision-makers wishing reduce impact pollution on public health through active measures (e.g. temporary traffic closures). In this study, we present a machine learning approach applied forecasts day-ahead maximum value ozone several geographical locations southern Switzerland. Due low density measurement stations and complex orography use-case terrain, adopted feature selection methods instead explicitly restricting relevant features neighborhood prediction sites, as common spatio-temporal forecasting methods. We then used Shapley values assess explainability learned models terms importance interactions relation predictions. Our analysis suggests that trained effectively explanatory cross-dependencies among atmospheric variables. Finally, show how weighting observations helps increase accuracy specific ranges ozone’s daily peak values.
منابع مشابه
Forecasting Ozone Density in Tehran Air Using a Smart Data-Driven Approach
Introduction: As a metropolitan area in Iran, Tehran is exposed to damage from air pollution due to its large population and pollutants from various sources. Accordingly, research on damage induced by air pollution in this city seems necessary. The main purpose of this study was to forecast ozone in the city of Tehran. Considering the hazards of ozone (O3) gas on human health and the environmen...
متن کاملMulti-objective analysis of ground-level ozone concentration control.
To develop sound air quality plans, regional authorities should have instruments that link the complex behaviour of pollutants both in time and space with costs of emission reduction. The problem is particularly important for ground level ozone which forms kilometres away, hours later from the emission of its precursors. To approach this problem, a method (1) to identify local pollutant-precurs...
متن کاملFuzzy Model based Prediction of Ground-Level Ozone Concentration
Ground-level ozone is a dangerous pollutant for which the prediction of the concentration could be of great importance. In this paper, we present and compare three fuzzy models aiming the forecasting of ground-level ozone concentration. The models apply Takagi-Sugeno, respective LESFRI fuzzy inference techniques and were generated using the ANFIS method of the Matlab’s Fuzzy Logic ToolBox, resp...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Forecasting
سال: 2022
ISSN: ['1872-8200', '0169-2070']
DOI: https://doi.org/10.1016/j.ijforecast.2021.07.008