A De-anonymization Attack for Social Network Graph Based on Structural and Node Feature Similarity
نویسندگان
چکیده
منابع مشابه
An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling
In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...
متن کاملClass-based graph anonymization for social network data
The recent rise in popularity of social networks, such as Facebook and MySpace, has created large quantities of data about interactions within these networks. Such data contains many private details about individuals so anonymization is required prior to attempts to make the data more widely available for scientific research. Prior work has considered simple graph data to be anonymized by remov...
متن کاملAnonymization and De-anonymization of Social Network Data
Adversary: Somebody who, whether intentionally or not, reveals sensitive, private information Adversarial model: Formal description of the unique characteristics of a particular adversary Attribute disclosure: A privacy breach wherein some descriptive attribute of somebody is revealed Identity disclosure: A privacy breach in which a presumably anonymous person is in fact identifiable k-P-anonym...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملSocial Network De-Anonymization and Privacy Inference with Knowledge Graph Model
Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2018
ISSN: 2475-8841
DOI: 10.12783/dtcse/iceiti2017/18923