A DIOPHANTINE FROBENIUS PROBLEM RELATED TO RIEMANN SURFACES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Linear Diophantine Problem of Frobenius

Let a1, a2, . . . , ak be positive and pairwise coprime integers with product P . For each i, 1 ≤ i ≤ k, set Ai = P/ai. We find closed form expressions for the functions g(A1, A2, . . . , Ak) and n(A1, A2, . . . , Ak) that denote the largest (respectively, the number of) N such that the equation A1x1 + A2x2 + · · · + Akxk = N has no solution in nonnegative integers xi. This is a special case of...

متن کامل

A geometric approach to the diophantine Frobenius problem

It turns out that all instances of the diophantine Frobenius problem for three coprime ai have a common geometric structure which is independent of arithmetic coincidences among the ai. By exploiting this structure we easily obtain Johnson’s formula for the largest non-representable z, as well as a formula for the number of such z. A procedure is described which computes these quantities in O(l...

متن کامل

The diophantine problem of Frobenius: A close bound

The conductor of n positive integer numbers a l,a2, ... ,an' whose greatest coII1mon divisor is equal'to I, is'defmed as the th.e minimal K, such that for every m ~K , the equation a1x 1+a2X 2+ ... +an Xn=m, h!ls a solution over the nOI}negative integers. In this notewe give a polYIlomial aigorithm computing'a close bound ~ for the conductor K o( n given positive integers, when n is fixed. The ...

متن کامل

An Estimate for Frobenius’ Diophantine Problem in Three Dimensions

We give upper and lower bounds for the largest integer not representable as a positive linear combination of three given integers, disproving an upper bound conjectured by Beck, Einstein and Zacks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2011

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089511000097