A direct proof for the matrix decomposition of chordal-structured positive semidefinite matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices

Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...

متن کامل

singular value inequalities for positive semidefinite matrices

in this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl‎. ‎308 (2000) 203-211] and [linear algebra appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning

In this work, we consider the problem of learning a positive semidefinite matrix. The critical issue is how to preserve positive semidefiniteness during the course of learning. Our algorithm is mainly inspired by LPBoost [1] and the general greedy convex optimization framework of Zhang [2]. We demonstrate the essence of the algorithm, termed PSDBoost (positive semidefinite Boosting), by focusin...

متن کامل

Positive Semidefinite Matrix Completions on Chordal Graphs and Constraint Nondegeneracy in Semidefinite Programming

Let G = (V, E) be a graph. In matrix completion theory, it is known that the following two conditions are equivalent: (i) G is a chordal graph; (ii) Every G-partial positive semidefinite matrix has a positive semidefinite matrix completion. In this paper, we relate these two conditions to constraint nondegeneracy condition in semidefinite programming and prove that they are each equivalent to (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2010

ISSN: 0024-3795

DOI: 10.1016/j.laa.2010.04.012