A direct solution to the stochastic inverse eigenvalue problem for complex-valued eigenspectra

نویسندگان

چکیده

We present a direct solution to the problem of constructing stochastic matrix with prescribed eigenspectrum, widely referred as inverse eigenvalue problem. The uses Markov state disaggregation construct chain associated transition possessing required eigenspectrum. Existing solutions that follow same approach are limited matrices real-valued eigenspectra. novel directly constructs complex-valued eigenspectra by applying new technique in tandem from previous solution. Due this generalization, is able successfully model physical systems larger family. Furthermore, finite and predetermined number iterations, without numerical approximation. demonstrated deriving an expression for set 4 × sharing eigenspectrum indexed real parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A solution of the Affine Quadratic Inverse Eigenvalue Problem

The quadratic inverse eigenvalue problem (QIEP) is to find the three matrices M,C, and K, given a set of numbers, closed under complex conjugations, such that these numbers become the eigenvalues of the quadratic pencil P (λ) = λM + λC + K. The affine inverse quadratic eigenvalue problem (AQIEP) is the QIEP with an additional constraint that the coefficient matrices belong to an affine family, ...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

On the Solution of the Inverse Eigenvalue Complementarity Problem

In this paper, we discuss the solution of an Inverse Eigenvalue Complementarity Problem. Two nonlinear formulations are presented for this problem. A necessary and sufficient condition for a stationary point of the first of these formulations to be a solution of the problem is established. On the other hand, for assuring global convergence to a solution of this problem when it exists, an enumer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2023

ISSN: ['1873-1856', '0024-3795']

DOI: https://doi.org/10.1016/j.laa.2022.11.005