A Dirichlet process mixture model for clustering longitudinal gene expression data
نویسندگان
چکیده
منابع مشابه
Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model
This chapter describes a clustering procedure for microarray expression data based on a well-defined statistical model, specifically, a conjugate Dirichlet process mixture model. The clustering algorithm groups genes whose latent variables governing expression are equal, that is, genes belonging to the same mixture component. The model is fit with Markov chain Monte Carlo and the computational ...
متن کاملHierarchical Dirichlet process model for gene expression clustering
: Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data...
متن کاملDirichlet Process Mixture Models for Verb Clustering
In this work we apply Dirichlet Process Mixture Models to a learning task in natural language processing (NLP): lexical-semantic verb clustering. We assess the performance on a dataset based on Levin’s (1993) verb classes using the recently introduced Vmeasure metric. In, we present a method to add human supervision to the model in order to to influence the solution with respect to some prior k...
متن کاملDirichlet Process Mixture Model for Correcting Technical Variation in Single-Cell Gene Expression Data
We introduce an iterative normalization and clustering method for single-cell gene expression data. The emerging technology of single-cell RNA-seq gives access to gene expression measurements for thousands of cells, allowing discovery and characterization of cell types. However, the data is confounded by technical variation emanating from experimental errors and cell type-specific biases. Curre...
متن کاملA Dirichlet Process Mixture Model for Spherical Data
Directional data, naturally represented as points on the unit sphere, appear in many applications. However, unlike the case of Euclidean data, flexible mixture models on the sphere that can capture correlations, handle an unknown number of components and extend readily to high-dimensional data have yet to be suggested. For this purpose we propose a Dirichlet process mixture model of Gaussian di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2017
ISSN: 0277-6715
DOI: 10.1002/sim.7374