A double commutant theorem for conjugate selfadjoint operators
نویسندگان
چکیده
منابع مشابه
A double commutant theorem for Murray-von Neumann algebras.
Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), wh...
متن کاملResolvent estimates for non-selfadjoint operators with double characteristics
We present recent progress in the understanding of the spectral and subelliptic properties of non-elliptic quadratic operators with application to the study of return to equilibrium for some systems of chains of oscillators. We then explain how these results allow to describe the spectral properties and to give sharp resolvent estimates for some classes of non-selfadjoint pseudodi erential oper...
متن کاملSpectral perturbation bounds for selfadjoint operators I∗
We give general spectral and eigenvalue perturbation bounds for a selfadjoint operator perturbed in the sense of the pseudo-Friedrichs extension. We also give several generalisations of the aforementioned extension. The spectral bounds for finite eigenvalues are obtained by using analyticity and monotonicity properties (rather than variational principles) and they are general enough to include ...
متن کاملSpectral instability for non-selfadjoint operators∗
We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.
متن کاملDynamical systems method (DSM) for selfadjoint operators
Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynamical systems method) for solving equation Av = f consists of solving the Cauchy problem u̇ = Φ(t, u), u(0) = u0, where Φ is a suitable operator, and proving that i) ∃u(t) ∀t > 0, ii) ∃u(∞), and iii) A(u(∞)) = f . It is proved that if equation Av = f is solvable and u solves the problem u̇ = i(A + ia)u − if, u(0) = u0, wher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1981
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1981-0627679-1