A Drainage Network with Dependence and the Brownian Web

نویسندگان

چکیده

We study a system of coalescing random walks on the integer lattice $$ {\mathbb {Z}}^{d} in which walk is oriented d-th direction and follows certain specified rules. first geometry paths show that, almost surely, form graph consisting just one tree for dimensions d=2,3 infinitely many disjoint trees d\ge 4 . Also, there no bi-infinite path surely 2 Subsequently, we prove that d=2 diffusive scaling this converges distribution to Brownian web.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to the Brownian Web for a Generalization of the Drainage Network Model

We introduce a system of one-dimensional coalescing nonsimple random walks with long range jumps allowing paths that can cross each other and are dependent even before coalescence. We show that under diffusive scaling this system converges in distribution to the Brownian Web. Résumé. Nous introduisons un système des marches aléatoires coalescentes non-simple unidimensionnelles, avec des sauts à...

متن کامل

A Framework of Web-GIS for Urban Drainage Network System

Combined with the GPRS (General Packet Radio Service) technology, Geographic Information Systems (GIS) extends its abilities from static to dynamic working environment for urban drainage network. In this paper, a framework of Web-GIS for the urban drainage network management system is presented. This three-layer system framework is based on the J2EE technologies. The principles of data structur...

متن کامل

2 The Brownian Web

Arratia, and later Tóth and Werner, constructed random processes that formally correspond to coalescing one-dimensional Brownian motions starting from every space-time point. We extend their work by constructing and characterizing what we call the Brown-ian Web as a random variable taking values in an appropriate (metric) space whose points are (compact) sets of paths. This leads to general con...

متن کامل

The Brownian web.

Arratia, [Arratia, R. (1979) Ph.D. thesis (University of Wisconsin, Madison) and unpublished work] and later Toth and Werner [Toth, B. & Werner, W. (1998) Probab. Theory Relat. Fields 111, 375-452] constructed random processes that formally correspond to coalescing one-dimensional Brownian motions starting from every space-time point. We extend their work by constructing and characterizing what...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2022

ISSN: ['0022-4715', '1572-9613']

DOI: https://doi.org/10.1007/s10955-022-02978-4