A Dynamic Convolutional Network-Based Model for Knowledge Graph Completion
نویسندگان
چکیده
Knowledge graph embedding can learn low-rank vector representations for knowledge entities and relations, has been a main research topic completion. Several recent works suggest that convolutional neural network (CNN)-based models capture interactions between head relation embeddings, hence perform well on However, previous have ignored the different contributions of interaction features to experimental results. In this paper, we propose novel model named DyConvNE base Our uses dynamic convolution kernel because assign weights varying importance features. We also new method negative sampling, which mines hard samples as additional training. performed experiments data sets WN18RR FB15k-237, results show our is better than several other benchmark algorithms addition, used test when predicting Hits@1 values specific-relationship testing. This gives about 2% relative improvement over do not use in terms Hits@1.
منابع مشابه
A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network
We introduce a novel embedding method for knowledge base completion task. Our approach advances state-of-the-art (SOTA) by employing a convolutional neural network (CNN) for the task which can capture global relationships and transitional characteristics. We represent each triple (head entity, relation, tail entity) as a 3-column matrix which is the input for the convolution layer. Different fi...
متن کاملGraph Convolutional Matrix Completion
We consider matrix completion for recommender systems from the point of view of link prediction on graphs. Interaction data such as movie ratings can be represented by a bipartite user-item graph with labeled edges denoting observed ratings. Building on recent progress in deep learning on graph-structured data, we propose a graph auto-encoder framework based on differentiable message passing on...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملGraph Based Convolutional Neural Network
In this paper we present a method for the application of Convolutional Neural Network (CNN) operators for use in domains which exhibit irregular spatial geometry by use of the spectral domain of a graph Laplacian, Figure 1. This allows learning of localized features in irregular domains by defining neighborhood relationships as edge weights between vertices in graph G. By formulating the domain...
متن کاملNeuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information
سال: 2022
ISSN: ['2078-2489']
DOI: https://doi.org/10.3390/info13030133