A Family of Minimax Estimators in Some Multiple Regression Problems
نویسندگان
چکیده
منابع مشابه
A new class of generalized Bayes minimax ridge regression estimators
Let y = Aβ + ε, where y is an N × 1 vector of observations, β is a p× 1 vector of unknown regression coefficients, A is an N × p design matrix and ε is a spherically symmetric error term with unknown scale parameter σ. We consider estimation of β under general quadratic loss functions, and, in particular, extend the work of Strawderman [J. Amer. Statist. Assoc. 73 (1978) 623–627] and Casella [A...
متن کاملA Remedy to Regression Estimators and Nonparametric Minimax Efficiency
It is known that both Watson-Nadaraya and Gasser-Muller types of regression estimators have some disadvantages. A smooth version of local polynomial regression estimators are proposed to remedy the disadvantages. The mean squared error and mean integrated squared errors are computed explicitly. It turns out that by suitably selecting a kernel and a bandwidth, the proposed estimator has at least...
متن کاملSome Modifications to Calculate Regression Coefficients in Multiple Linear Regression
In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...
متن کاملImproved Estimators in Nonparametric Regression Problems
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملSome Ridge Regression Estimators and Their Performances
The estimation of ridge parameter is an important problem in the ridge regression method, which is widely used to solve multicollinearity problem. A comprehensive study on 28 different available estimators and five proposed ridge estimators, KB1, KB2, KB3, KB4, and KB5, is provided. A simulation study was conducted and selected estimators were compared. Some of selected ridge estimators perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1979
ISSN: 0090-5364
DOI: 10.1214/aos/1176344798