A family of root-finding methods with accelerated convergence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A family of root-finding methods with accelerated convergence

Keywords--Determinat ion of polynomial zeros, Simultaneous iterative methods, Convergence analysis, Accelerated convergence, R-order of convergence. 1. I N T R O D U C T I O N The problem of determining polynomial zeros has a great impor tance in theory and practice (for instance, in the theory of control systems, digital signal processing, s tabil i ty of systems, analysis of transfer function...

متن کامل

A new family of four-step fifteenth-order root-finding methods with high efficiency index

‎In this paper a new family of fifteenth-order methods with high efficiency index is presented‎. This family include four evaluations of the function and one evaluation of its first derivative per iteration.‎ ‎Therefore‎, ‎this family of methods has the efficiency index which equals 1.71877‎. ‎In order to show the applicability and validity of the class‎, ‎some numerical examples are discussed‎.

متن کامل

A Family of Root Finding Methods*

A one parameter family of iteration functions for finding roots is derived. ] h e family includes the Laguerre, Halley, Ostrowski and Euler methods and, as a limiting case, Newton's method. All the methods of the family are cubically convergent for a simple root (except Newton's which is quadratically convergent). The superior behavior of Laguerre's method, when starting from a point z for whic...

متن کامل

On a family of Weierstrass-type root-finding methods with high order of convergence

in English: In 1985, Kyurkchiev and Andreev [1] constructed a sequence of iterative methods for finding all zeros of a polynomial simultaneously. In the literature there are only local convergence results for these methods (see [1, 5]). In this talk, we present a semilocal convergence theorem for Kyurkchiev-Andreev’s methods under computationally verifiable initial conditions and with an a post...

متن کامل

A Family of Iterative Methods with Accelerated Eighth-Order Convergence

We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2006

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2005.10.013