A fixed point problem under a finite number of equality constraints involving a Ciric operator
نویسندگان
چکیده
منابع مشابه
Meromorphic Functions with a Fixed Point Involving Dziok-raina Operator
In the present investigation, the authors define a new class of meromorphic functions defined in the punctured unit disk ∆∗ := {z ∈ C : 0 < |z| < 1} by making use of the generalized Dziok-Srivastava operator L1 η,l,m. Coefficient inequalities, growth and distortion inequalities, as well as closure results are obtained. We also establish some results concerning the partial sums of meromorphic fu...
متن کاملStrong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms
Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space. So many have used algorithms involving the operator norm for solving split equality fixed point problem, ...
متن کاملA Ciric-type common fixed point theorem in complete b-metric spaces
In this paper, we define the concept of compatible and weakly compatible mappings in b-metric spaces and inspired by the Ciric and et. al method, we produce appropriate conditions for given the unique common fixed point for a family of the even number of self-maps with together another two self-maps in a complete b-metric spaces. Also, we generalize this common fixed point theorem for a seq...
متن کاملInfinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator
By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf
متن کاملA Class of nonlinear $(A,eta)$-monotone operator inclusion problems with iterative algorithm and fixed point theory
A new class of nonlinear set-valued variationalinclusions involving $(A,eta)$-monotone mappings in a Banachspace setting is introduced, and then based on the generalizedresolvent operator technique associated with$(A,eta)$-monotonicity, the existence and approximationsolvability of solutions using an iterative algorithm and fixedpint theory is investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2017
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1711193r