A fractional Laplacian problem with mixed singular nonlinearities and nonregular data

نویسندگان

چکیده

In this note, we study the existence and uniqueness of a positive solution to doubly singular fractional problem with nonregular data. Besides, for some cases, will show another notion solution, so-called entropy solution. Also, suitable assumptions on data, discuss uniqueness. Finally, have relaxation assumption prove results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of a positive solution for a p-Laplacian equation with‎ ‎singular nonlinearities

‎In this paper‎, ‎we study a class of boundary value problem‎ ‎involving the p-Laplacian oprator and singular nonlinearities‎. ‎We‎ ‎analyze the existence a critical parameter $lambda^{ast}$ such‎ ‎that the problem has least one solution for‎ ‎$lambdain(0,lambda^{ast})$ and no solution for‎ ‎$lambda>lambda^{ast}.$ We find lower bounds of critical‎ ‎parameter $lambda^{ast}$‎. ‎We use the method ...

متن کامل

Functional fractional boundary value problems with singular ϕ-Laplacian

This paper discusses the existence of solutions of the fractional differential equations D(φ(Du)) = Fu, D(φ(Du)) = f(t, u, Du) satisfying the boundary conditions u(0) = A(u), u(T ) = B(u). Here μ, α ∈ (0, 1], ν ∈ (0, α], D is the Caputo fractional derivative, φ ∈ C(−a, a) (a > 0), F is a continuous operator, A,B are bounded and continuous functionals and f ∈ C([0, T ] × R). The existence result...

متن کامل

existence of a positive solution for a p-laplacian equation with‎ ‎singular nonlinearities

‎in this paper‎, ‎we study a class of boundary value problem‎ ‎involving the p-laplacian oprator and singular nonlinearities‎. ‎we‎ ‎analyze the existence a critical parameter $lambda^{ast}$ such‎ ‎that the problem has least one solution for‎ ‎$lambdain(0,lambda^{ast})$ and no solution for‎ ‎$lambda>lambda^{ast}.$ we find lower bounds of critical‎ ‎parameter $lambda^{ast}$‎. ‎we use the method ...

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

Singular Dirichlet Problem for Ordinary Differential Equations with Φ-laplacian

We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with φ-Laplacian (φ(u)) = f(t, u, u), u(0) = A, u(T ) = B, where φ is an increasing homeomorphism, φ( ) = , φ(0) = 0, f satisfies the Carathéodory conditions on each set [a, b] × 2 with [a, b] ⊂ (0, T ) and f is not integrable on [0, T ] for some fixed values of its phase variables. We prove the exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of elliptic and parabolic equations

سال: 2021

ISSN: ['2296-9039', '2296-9020']

DOI: https://doi.org/10.1007/s41808-021-00113-0