A General Scenario Theory for Nonconvex Optimization and Decision Making
نویسندگان
چکیده
منابع مشابه
A general theory of decision making
We formulate a general theory of decision making based on a lattice of observable events, and we exhibit a large class of representations called the general model. Some of the representations are equivalent to the so called standard model in which observable events are modelled by an algebra of measurable subsets of a state space, while others are not compatible with such a description. We show...
متن کاملαBB: A global optimization method for general constrained nonconvex problems
A branch and bound global optimization method, BB, for general continuous optimization problems involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem is obtained by (i) replacing all nonconvex terms of special structure (i.e. bil...
متن کاملA General Theory of Pathwise Coordinate Optimization for Nonconvex Sparse Learning∗
The pathwise coordinate optimization is one of the most important computational frameworks for solving high dimensional convex and nonconvex sparse learning problems. It differs from the classical coordinate optimization algorithms in three salient features: warm start initialization, active set updating, and strong rule for coordinate preselection. These three features grant superior empirical...
متن کاملFUZZY SOFT MATRIX THEORY AND ITS APPLICATION IN DECISION MAKING
In this work, we define fuzzy soft ($fs$) matrices and theiroperations which are more functional to make theoretical studies inthe $fs$-set theory. We then define products of $fs$-matrices andstudy their properties. We finally construct a $fs$-$max$-$min$decision making method which can be successfully applied to theproblems that contain uncertainties.
متن کاملDuality Theory: Biduality in Nonconvex Optimization Duality Theory: Biduality in Nonconvex Optimization
It is known that in convex optimization, the Lagrangian associated with a constrained problem is usually a saddle function, which leads to the classical saddle Lagrange duality (i. e. the monoduality) theory. In nonconvex optimization, a so-called superLagrangian was introduced in [1], which leads to a nice biduality theory in convex Hamiltonian systems and in the so-called d.c. programming.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2018
ISSN: 0018-9286,1558-2523,2334-3303
DOI: 10.1109/tac.2018.2808446