A generalized vertex operator algebra for Heisenberg intertwiners
نویسندگان
چکیده
منابع مشابه
The Generalized Heisenberg - Virasoro algebra ∗
In this paper, we mainly study the generalized Heisenberg-Virasoro algebra. Some structural properties of the Lie algebra are obtained.
متن کاملThe radical of a vertex operator algebra
Each v ∈ V has a vertex operator Y (v, z) = ∑ n∈Z vnz −n−1 attached to it, where vn ∈ EndV. For the conformal vector ω we write Y (ω, z) = ∑ n∈Z L(n)z . If v is homogeneous of weight k, that is v ∈ Vk, then one knows that vn : Vm → Vm+k−n−1 and in particular the zero mode o(v) = vwtv−1 induces a linear operator on each Vm. We extend the “o” notation linearly to V, so that in general o(v) is the...
متن کاملA Characetrization of Vertex Operator Algebra L(
It is shown that any simple, rational and C2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with central charge c = 1, is isomorphic to L(12 , 0) ⊗ L( 1 2 , 0). 2000MSC:17B69
متن کاملGeneralized twisted modules associated to general automorphisms of a vertex operator algebra
We introduce a notion of strongly C×-graded, or equivalently, C/Zgraded generalized g-twisted V -module associated to an automorphism g, not necessarily of finite order, of a vertex operator algebra. We also introduce a notion of strongly C-graded generalized g-twisted V -module if V admits an additional C-grading compatible with g. Let V = ∐ n∈Z V(n) be a vertex operator algebra such that V(0)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2012
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2011.10.025