A geometric renormalization group in discrete quantum space–time
نویسندگان
چکیده
منابع مشابه
A Geometric Renormalisation Group in Discrete Quantum Space-Time
We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalisation group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that...
متن کاملSpacetime and the Holographic Renormalization Group
Anti-de Sitter (AdS) space can be foliated by a family of nested surfaces homeomorphic to the boundary of the space. We propose a holographic correspondence between theories living on each surface in the foliation and quantum gravity in the enclosed volume. The flow of observables between our “interior” theories is described by a renormalization group equation. The dependence of these flows on ...
متن کاملRenormalization Group in Quantum Mechanics
The running coupling constants are introduced in Quantum Mechanics and their evolution is described by the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The hamiltonian and the lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models.
متن کاملRenormalization Group in Quantum Mechanics
We establish the renormalization group equation for the running action in the context of a one quantum particle system. This equation is deduced by integrating each fourier mode after the other in the path integral formalism. It is free of the well known pathologies which appear in quantum field theory due to the sharp cutoff. We show that for an arbitrary background path the usual local form o...
متن کاملRenormalization group equations and geometric flows
The quantum field theory of two-dimensional sigma models with bulk and boundary couplings provides a natural framework to realize and unite different species of geometric flows that are of current interest in mathematics. In particular, the bulk renormalization group equation gives rise to the Ricci flow of target space metrics, to lowest order in perturbation theory, whereas the boundary renor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2003
ISSN: 0022-2488
DOI: 10.1063/1.1619579