A globalization for non-complete but geodesic spaces
نویسندگان
چکیده
منابع مشابه
Convexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملSuperstability of $m$-additive maps on complete non--Archimedean spaces
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
متن کاملGeneralized multivalued $F$-contractions on non-complete metric spaces
In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...
متن کاملLinear liftings for non - complete probability spaces
We show that it is consistent with ZFC that L(Y,B, ν) has no linear lifting for many non-complete probability spaces (Y,B, ν), in particular for Y = [0, 1], B = Borel subsets of Y , ν = usual Radon measure on B. AMS Subject Classification 1980 (1985 revision): Primary: 28A51 Secondary: 03E35 1) Research supported by UPEI Senate Grant no 602101, by the Research Institute for Mathematical Science...
متن کاملOn Splitting Theorems for Cat(0) Spaces and Compact Geodesic Spaces of Non-positive Curvature
In this paper, we prove some splitting theorems for CAT(0) spaces on which some product group acts geometrically and show a splitting theorem for compact geodesic spaces of nonpositive curvature. A CAT(0) group Γ is said to be rigid, if Γ determines the boundary up to homeomorphism of a CAT(0) space on which Γ acts geometrically. Croke and Kleiner have constructed a non-rigid CAT(0) group. As a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2015
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-015-1295-8