A high order immersed finite element method for parabolic interface problems
نویسندگان
چکیده
منابع مشابه
Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems
We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.
متن کاملNitsche finite element method for parabolic problems
This paper deals with a method for the numerical solution of parabolic initialboundary value problems in two-dimensional polygonal domains Ω which are allowed to be non-convex. The Nitsche finite element method (as a mortar method) is applied for the discretization in space, i.e. non-matching meshes are used. For the discretization in time, the backward Euler method is employed. The rate of con...
متن کاملA High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملPartially Penalized Immersed Finite Element Methods For Elliptic Interface Problems
This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...
متن کاملSuperconvergence of immersed finite element methods for interface problems
In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ITM Web of Conferences
سال: 2019
ISSN: 2271-2097
DOI: 10.1051/itmconf/20192901007