A Hormone-Activated Central Pattern Generator for Courtship
نویسندگان
چکیده
منابع مشابه
A Hormone-Activated Central Pattern Generator for Courtship
BACKGROUND Medicinal leeches (Hirudo spp.) are simultaneous hermaphrodites. Mating occurs after a stereotyped twisting and oral exploration that result in the alignment of the male and/or female gonopores of one leech with the complementary gonopores of a partner. The neural basis of this behavior is presently unknown and currently impossible to study directly because electrophysiological recor...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملWalking Pattern Generator Using an Evolutionary Central Pattern Generator
For the generation of locomotion, such as walking, running or swimming, vertebrate and invertebrate animals use the Central Pattern Generator (CPG). In this paper, a walking pattern generator is proposed using an evolutionary optimized CPG. Sensory feedback pathways in CPG are proposed, which uses Force Sensing Resistor (FSR) signals. For the optimization of CPG parameters, quantuminspired evol...
متن کاملThe mammalian central pattern generator for locomotion.
At the beginning of the 20th century, Thomas Graham Brown conducted experiments that after a long hiatus changed views on the neural control of locomotion. His seminal work supported by subsequent evidence generated largely from the 1960s onwards showed that across species walking, flying, and swimming are controlled largely by a neuronal network that has been referred to as the central pattern...
متن کاملCentral pattern generator for swimming in Melibe.
The nudibranch mollusc Melibe leonina swims by bending from side to side. We have identified a network of neurons that appears to constitute the central pattern generator (CPG) for this locomotor behavior, one of only a few such networks to be described in cellular detail. The network consists of two pairs of interneurons, termed 'swim interneuron 1' (sint1) and 'swim interneuron 2' (sint2), ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Biology
سال: 2010
ISSN: 0960-9822
DOI: 10.1016/j.cub.2010.02.027