A Hybrid Topic Model for Multi-Document Summarization
نویسندگان
چکیده
منابع مشابه
A Hybrid Topic Model for Multi-Document Summarization
Topic features are useful in improving text summarization. However, independency among topics is a strong restriction on most topic models, and alleviating this restriction can deeply capture text structure. This paper proposes a hybrid topic model to generate multi-document summaries using a combination of the Hidden Topic Markov Model (HTMM), the surface texture model and the topic transition...
متن کاملMulti-Topic Multi-Document Summarization
Summarization of multiple documents featuring multiple topics is discussed. The example trea.ted here consists of fifty articles about the Peru hostage incident tbr ])ecember 1996 through April 1997. They include a. lot of topics such as opening, negotiation, ending, and so on. The method proposed in this paper is based on spreading activation over documents syntactically and semantically annot...
متن کاملA novel contextual topic model for multi-document summarization
Information overload becomes a serious problem in the digital age. It negatively impacts understanding of useful information. How to alleviate this problem is the main concern of research on natural language processing, especially multi-document summarization. With the aim of seeking a new method to help justify the importance of similar sentences in multi-document summarizations, this study pr...
متن کاملA Hybrid Hierarchical Model for Multi-Document Summarization
Scoring sentences in documents given abstract summaries created by humans is important in extractive multi-document summarization. In this paper, we formulate extractive summarization as a two step learning problem building a generative model for pattern discovery and a regression model for inference. We calculate scores for sentences in document clusters based on their latent characteristics u...
متن کاملPersonalized Multi-Document Summarization using N-Gram Topic Model Fusion
We consider the problem of probabilistic topic modeling for query-focused multi-document summarization. Rather than modeling topics as distributions over a vocabulary of terms, we extend the probabilistic latent semantic analysis (PLSA) approach with a bigram language model. This allows us to relax the conditional independence assumption between words made by standard topic models. We present a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2015
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2014edp7229