A Hyperspectral Target Detection Framework With Subtraction Pixel Pair Features
نویسندگان
چکیده
منابع مشابه
A Hyperspectral Image Classification Framework with Spatial Pixel Pair Features
During recent years, convolutional neural network (CNN)-based methods have been widely applied to hyperspectral image (HSI) classification by mostly mining the spectral variabilities. However, the spatial consistency in HSI is rarely discussed except as an extra convolutional channel. Very recently, the development of pixel pair features (PPF) for HSI classification offers a new way of incorpor...
متن کاملMultiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection
The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a mixture of both target and non-target signatures (i.e., subpixel targets), making extractin...
متن کاملA New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery
Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...
متن کاملTarget signature-constrained mixed pixel classification for hyperspectral imagery
Linear spectral mixture analysis has been widely used for subpixel detection and mixed pixel classification. When it is implemented as constrained LSMA, the constraints are generally imposed on abundance fractions in the mixture. In this paper, we consider an alternative approach, which imposes constraints on target signature vectors rather than target abundance fractions. The idea is to constr...
متن کاملAdaptive Subspace Target Detection in Hyperspectral Imagery
* Corresponding author. Abstract –Adaptive subspace detectors are widely used for low probability and anomaly detection. The complex remote sensing conditions in which hyperspectral imagery is obtained make the detector performance evaluation a non-trivial task. Many of the detector design parameters can only be studied empirically for their effects on detection performance. In this paper, hype...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2865963