A learning-based CT prostate segmentation method via joint transductive feature selection and regression
نویسندگان
چکیده
منابع مشابه
Feature Selection via Joint Embedding Learning and Sparse Regression
The problem of feature selection has aroused considerable research interests in the past few years. Traditional learning based feature selection methods separate embedding learning and feature ranking. In this paper, we introduce a novel unsupervised feature selection approach via Joint Embedding Learning and Sparse Regression (JELSR). Instead of simply employing the graph laplacian for embeddi...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملTransductive Learning via Model Selection
A novel transductive learning algorithm is proposed, which is based on the use of model selection. In its simplest form there are k possible labels, m labeled points and one unlabeled point. One model is built for each possible classification of the unlabeled point yM+1 = Li, i = 1, ..., k, using all M + 1 points and M + 1 labels. Any standard model selection criterion can then be applied to se...
متن کاملTransductive Prostate Segmentation for CT Image Guided Radiotherapy
Accurate 3-D prostate segmentation is a significant and challenging issue for CT image guided radiotherapy. In this paper, a novel transductive method for 3-D prostate segmentation is proposed, which incorporates the physician’s interactive labeling information, to aid accurate segmentation, especially when large irregular prostate motion occurs. More specifically, for the current treatment ima...
متن کاملEffective transductive learning via objective model selection
This paper is concerned with transductive learning. We study a recent transductive learning approach based on clustering. In this approach one constructs a diversity of unsupervised models of the unlabeled data using clustering algorithms. These models are then exploited to construct a number of hypotheses using the labeled data and the learner selects an hypothesis that minimizes a transductiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2016
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2014.11.098