A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (QAP) is arguably one of the hardest NP-hard discrete optimization problems. Problems of dimension greater than 25 are still considered to be large scale. Current successful solution techniques use branch-and-bound methods, which rely on obtaining strong and inexpensive bounds. In this paper, we introduce a new semidefinite programming (SDP) relaxation for gener...

متن کامل

A Matrix-lifting Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (QAP ) is arguably one of the hardest of the NP-hard discrete optimization problems. Problems of dimension greater than 20 are considered to be large scale. Current successful solution techniques depend on branch and bound methods. However, it is difficult to get strong and inexpensive bounds. In this paper we introduce a new semidefinite programming (SDP ) rela...

متن کامل

A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives

Recent progress in solving quadratic assignment problems (QAPs) from the QAPLIB test set has come from mixed integer linear or quadratic programming models that are solved in a branchand-bound framework. Semide nite programming bounds for QAP have also been studied in some detail, but their computational impact has been limited so far, mostly due to the restrictive size of the early relaxations...

متن کامل

Semidefinite Programming Relaxations for the Quadratic Assignment Problem

Semideenite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualii-cation always fails for the primal...

متن کامل

Eigenvalue Bounds Versus Semidefinite Relaxations for the Quadratic Assignment Problem

It was recently demonstrated that a well-known eigenvalue bound for the Quadratic Assignment Problem (QAP) actually corresponds to a semideenite programming (SDP) relaxation. However, for this bound to be computationally useful the assignment constraints of the QAP must rst be eliminated, and the bound then applied to a lower-dimensional problem. The resulting \projected eigenvalue bound" is on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Operations Research

سال: 2009

ISSN: 0364-765X,1526-5471

DOI: 10.1287/moor.1090.0419