A Mass-Based Approach for Local Outlier Detection
نویسندگان
چکیده
منابع مشابه
A Local Density-Based Approach for Local Outlier Detection
This paper presents a simple but effective density-based outlier detection approach with the local kernel density estimation (KDE). A Relative Densitybased Outlier Score (RDOS) is introduced to measure the local outlierness of objects, in which the density distribution at the location of an object is estimated with a local KDE method based on extended nearest neighbors of the object. Instead of...
متن کاملSimilarity- based approach for outlier detection
This paper presents a new approach for detecting outliers by introducing the notion of object’s proximity. The main idea is that normal point has similar characteristics with several neighbors. So the point in not an outlier if it has a high degree of proximity and its neighbors are several. The performance of this approach is illustrated through real datasets.
متن کاملOutlier Detection : A Clustering - Based Approach
16 Abstract— Outlier detection is a fundamental issue in data mining; specifically it has been used to detect and remove anomalous objects from data. It is an extremely important task in a wide variety of application domains. In this paper, a proposed method based on clustering approaches for outlier detection is presented. We first perform the Partitioning Around Medoids (PAM) clustering algor...
متن کاملA New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data
Detecting outliers which are grossly different from or inconsistent with the remaining dataset is a major challenge in real-world KDD applications. Existing outlier detection methods are ineffective on scattered real-world datasets due to implicit data patterns and parameter setting issues. We define a novel Local Distance-based Outlier Factor (LDOF) to measure the outlier-ness of objects in sc...
متن کاملOutlier Detection Based on Local Kernel Regression for Instance Selection
In this paper, we propose an outlier detection approach based on local kernel regression for instance selection. It evaluates the reconstruction error of instances by their neighbors to identify the outliers. Experiments are performed on the synthetic and real data sets to show the efficacy of the proposed approach in comparison with the existing counterparts.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3053072