A Method for Generating Infinite Positive Self-adjoint Test Matrices and Riesz Bases

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Generating Infinite Positive Self-adjoint Test Matrices and Riesz Bases

In this article we propose a method to easily generate infinite multi-index positive definite self-adjoint matrices as well as Riesz bases in suitable subspaces of L2(Rd). The method is then applied to obtain some classes of multi-index Toeplitz matrices which are bounded and strictly positive on 2(Zd). The condition number of some of these matrices is also computed.

متن کامل

Frames, Riesz Bases and Double Infinite Matrices

In this paper we have used double infinite matrix A = (ailjk) of real numbers to define the A-frame. Some results on Riesz basis and A-frame also have been studied. This Work is motivated from the work of Moricz and Rhoades [7]. 2001 AMS Classification. Primary 41A17, Secondary 42C15.

متن کامل

A New Approach to Continuous Riesz Bases

This paper deals with continuous frames and continuous Riesz bases. We introduce continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis. It is certainly possible for a continuous frame to have only one dual. Such a continuous frame is called a Riesz-type frame [13]. We show that a continuous frame is Riesz-type if and only if it is a con...

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2005

ISSN: 0895-4798,1095-7162

DOI: 10.1137/s0895479803432502