A minimum effort optimal control problem for the wave equation
نویسندگان
چکیده
منابع مشابه
A minimum effort optimal control problem for the wave equation
A minimum effort optimal control problem for the undamped wave equation is considered which involves L∞–control costs. Since the problem is non-differentiable a regularized problem is introduced. Uniqueness of the solution of the regularized problem is proven and the convergence of the regularized solutions is analyzed. Further, a semi-smooth Newton method is formulated to solve the regularized...
متن کاملAn optimal control problem for a engineering system
In this article, we apply this new method for solving an engineering systemwith initial and boundary conditions and integral criterion ,and we will usingdynamic programming as iteration for solving model.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLp-Optimal Boundary Control for the Wave Equation
We study problems of boundary controllability with minimal L p-norm (p ∈ [2, ∞]) for the one-dimensional wave equation, where the state is controlled at both boundaries through Dirichlet or Neumann conditions. The problem is to reach a given terminal state and velocity in a given finite time, while minimizing the L p-norm of the controls. We give necessary and sufficient conditions for the solv...
متن کاملOptimal Control of a Boundary Obstacle Problem of the 1-D Wave Equation
In this paper we consider the problem of optimal control of a boundary obstacle problem of the 1-D wave equation. We establish the existence and uniqueness of an optimal obstacle, give the characterization of the obstacle and obtain a Hamilton-Jacobi equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2013
ISSN: 0926-6003,1573-2894
DOI: 10.1007/s10589-013-9587-y