A modified structured central scheme for 2D hyperbolic conservation laws

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Central Weno-tvd Scheme for Hyperbolic Conservation Laws

The purpose of this paper is to carry out a modification of the finite volume WENO (weighted essentially non-oscillatory) scheme of Titarev and Toro [10]. This modification is done by using the third order TVD flux [10] as building blocks in spatially fifth order WENO schemes, instead of the second order TVD flux proposed by Titarev and Toro. The resulting scheme improves both the original and ...

متن کامل

Third order nonoscillatory central scheme for hyperbolic conservation laws

A third-order accurate Godunov-type scheme for the approximate solution of hyperbolic systems of conservation laws is presented. Its two main ingredients include: 1. A non-oscillatory piecewise-quadratic reconstruction of pointvalues from their given cell averages; and 2. A central differencing based on staggered evolution of the reconstructed cell averages. This results in a third-order centra...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A Genuinely Multi-dimensional Relaxation Scheme for Hyperbolic Conservation Laws

A new genuinely multi-dimensional relaxation scheme is proposed. Based on a new discrete velocity Boltzmann equation, which is an improvement over previously introduced relaxation systems in terms of isotropic coverage of the multi-dimensional domain by the foot of the characteristic, a finite volume method is developed in which the fluxes at the cell interfaces are evaluated in a genuinely mul...

متن کامل

A central Rankine-Hugoniot solver for hyperbolic conservation laws

A numerical method in which the Rankine-Hugoniot condition is enforced at the discrete level is developed. The simple format of central discretization in a finite volume method is used together with the jump condition to develop a simple and yet accurate numerical method free of Riemann solvers and complicated flux splittings. The steady discontinuities are captured accurately by this numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 1999

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(99)00084-1