A multiscale method for the heterogeneous Signorini problem

نویسندگان

چکیده

In this paper, we develop a multiscale method for solving the Signorini problem with heterogeneous field. The is encountered in many applications, such as hydrostatics, thermics, and solid mechanics. It well-known that numerically requires fine computational mesh, which can lead to large number of degrees freedom. aim work new hybrid based on framework generalized finite element (GMsFEM). construction basis functions local spectral decomposition. Additional related contact boundary are required so our handle unilateral condition type naturally. A complete analysis proposed provided result convergence shown. Numerical results validate theoretical findings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substructuring of a Signorini-type problem and Robin's method for the Richards equation in heterogeneous soil

We prove a substructuring result for a variational inequality concerning — but not restricted to — the Richards equation in homogeneous soil and including boundary conditions of Signorini’s type. This generalizes existing results for the linear case and leads to interface conditions known from linear variational equalities: continuity of Dirichlet and flux values in a weak sense. In case of the...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A multiscale numerical method for the heterogeneous cable equation

Several interesting problems in neuroscience are of multiscale type, i.e. possess different temporal and spatial scales that cannot be disregarded. Such characteristics impose severe burden to numerical simulations since the need to resolve small scale features pushes the computational costs to unreasonable levels. Classical numerical methods that do not resolve the small scales suffer from Thi...

متن کامل

Fast Communication Convergence of a Space Semi-discrete Modified Mass Method for the Dynamic Signorini Problem

A new space semi-discretization for the dynamic Signorini problem, based on a modification of the mass term, has been recently proposed. We prove the convergence of the space semi-discrete solutions to a solution of the continuous problem in the case of a visco-elastic material.

متن کامل

Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem

A new space semi-discretization for the dynamic Signorini problem, based on a modification of the mass term, has been recently proposed. We prove the convergence of the space semi-discrete solutions to a solution of the continuous problem in the case of a visco-elastic material.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2022

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2022.114160