A New Bilinear Supervised Neighborhood Discrete Discriminant Hashing

نویسندگان

چکیده

Feature extraction is an important part of perceptual hashing. How to compress the robust features images into hash codes has become a hot research topic. Converting two-dimensional image one-dimensional descriptor requires higher computational cost and not optimal. In order maintain internal feature structure original image, new Bilinear Supervised Neighborhood Discrete Discriminant Hashing (BNDDH) algorithm proposed in this paper. Firstly, constructs two neighborhood graphs geometric relationship between samples reduces quantization loss by directly constraining codes. Secondly, small rotation matrices are used realize bilinear projection descriptor. Finally, experiment verifies performance BNDDH under different types, such as pixels Convolutional Neural Network (CNN)-based AlexConv5 feature. The experimental results discussion clearly show that better than existing traditional hashing can represent more efficiently

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Supervised Discrete Hashing

With the rapid growth of image and video data on the web, hashing has been extensively studied for image or video search in recent years. Benefiting from recent advances in deep learning, deep hashing methods have achieved promising results for image retrieval. However, there are some limitations of previous deep hashing methods (e.g., the semantic information is not fully exploited). In this p...

متن کامل

Deep Discrete Supervised Hashing

Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, util...

متن کامل

Column Sampling Based Discrete Supervised Hashing

By leveraging semantic (label) information, supervised hashing has demonstrated better accuracy than unsupervised hashing in many real applications. Because the hashing-code learning problem is essentially a discrete optimization problem which is hard to solve, most existing supervised hashing methods try to solve a relaxed continuous optimization problem by dropping the discrete constraints. H...

متن کامل

Fast Supervised Discrete Hashing and its Analysis

In this paper, we propose a learning-based supervised discrete hashing method. Binary hashing is widely used for large-scale image retrieval as well as video and document searches because the compact representation of binary code is essential for data storage and reasonable for query searches using bit-operations. The recently proposed Supervised Discrete Hashing (SDH) efficiently solves mixed-...

متن کامل

Semi-supervised Neighborhood Preserving Discriminant Embedding: A Semi-supervised Subspace Learning Algorithm

Over the last decade, supervised and unsupervised subspace learning methods, such as LDA and NPE, have been applied for face recognition. In real life applications, besides unlabeled image data, prior knowledge in the form of labeled data is also available, and can be incorporated in subspace learning algorithm resulting in improved performance. In this paper, we propose a subspace learning met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10122110