A New Class of $$p$$-Adic Lipschitz Functions and Multidimensional Hensel’s Lemma
نویسندگان
چکیده
In this work we study $$p$$ -adic continuous functions in several variables taking values on $$\mathbb{Z}_p$$ . We describe the orthonormal van der Put base of these and various Lipschitz conditions variables, generalizing previous Anashin. particular, introduce a new class some their properties. also prove Hensel’s lifting lemma for functions, results Yurova Khrennikov.
منابع مشابه
Extension of P-adic Definable Lipschitz Functions
Write OK for the valuation ting, MK for the maximal ideal of K and kK for the residue field. Let us fix $ some uniformizer of K. We denote by acm : K → OK/(MK) the map sending some nonzero x ∈ K to x$−ord(x) mod MK , and sending zero to zero. This is a definable map. We denote by RV the union of K×/(1 +MK) and {0} and by rv : K → RV the quotient map. More generally, if m ∈ N∗, we set RVm = K×/(...
متن کاملp-ADIC CLASS INVARIANTS
We develop a new p-adic algorithm to compute the minimal polynomial of a class invariant. Our approach works for virtually any modular function yielding class invariants. The main algorithmic tool is modular polynomials, a concept which we generalize to functions of higher level.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: P-adic Numbers, Ultrametric Analysis, and Applications
سال: 2022
ISSN: ['2070-0466', '2070-0474']
DOI: https://doi.org/10.1134/s2070046622010010