A New Command Shaping Guidance Law using Lagrange Multiplier

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new proof of the Lagrange multiplier rule

We present an elementary self-contained proof for the Lagrange multiplier rule. It does not refer to any substantial preparations and it is only based on the observation that a certain limit is positive. At the end of this note, the power of the Lagrange multiplier rule is analyzed.

متن کامل

Intelligent guidance method based on differential geometric guidance command and fuzzy self-adaptive guidance law

Differential geometric guidance command (DGGC) is widely acknowledged as a better method of endoatmospheric interception than three-dimensional (3D) pure proportional navigation (PPN). DGGC can be regarded as an intelligent method due to its sophisticated sense of Lyapunov. However, traditional DGGC cannot guarantee line of sight (LOS) finite time convergence (FTC) to zero against maneuvering t...

متن کامل

Pseudonormality and a Lagrange Multiplier Theory

Lagrange multipliers are central to analytical and computational studies in linear and nonlinear optimization and have applications in a wide variety of fields, including communication, networking, economics, and manufacturing. In the past, the main research in Lagrange multiplier theory has focused on developing general and easily verifiable conditions on the constraint set, called constraint ...

متن کامل

An Approximate Lagrange Multiplier Rule

In this paper, we show that for a large class of optimization problems, the Lagrange multiplier rule can be derived from the so-called approximate multiplier rule. In establishing the link between the approximate and the exact multiplier rule we first derive an approximate multiplier rule for a very general class of optimization problems using the approximate sum rule and the chain rule. We als...

متن کامل

A mu - differentiable Lagrange multiplier rule ∗

We present some properties of the gradient of a mu-differentiable function. The Method of Lagrange Multipliers for mu-differentiable functions is then exemplified.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC-PapersOnLine

سال: 2017

ISSN: 2405-8963

DOI: 10.1016/j.ifacol.2017.08.2351