A new family of polynomial identities for computing determinants
نویسندگان
چکیده
منابع مشابه
A New Distribution Family Constructed by Fractional Polynomial Rank Transmutation
In this study‎, ‎a new polynomial rank transmutation is proposed with the help of‎ ‎ the idea of quadratic rank transmutation mapping (QRTM)‎. ‎This polynomial rank‎ ‎ transmutation is allowed to extend the range of the transmutation parameter from‎ ‎ [-1,1] to [-1,k]‎‎. ‎At this point‎, ‎the generated distributions gain more&lrm...
متن کاملA New Method for Computing Determinants By Reducing The Orders By Two
In this paper we will present a new method to calculate determinants of square matrices. The method is based on the Chio-Dodgson's condensation formula and our approach automatically affects in reducing the order of determinants by two. Also, using the Chio's condensation method we present an inductive proof of Dodgson's determinantal identity.
متن کاملPolynomial identities for partitions
For any partition λ of an integer n , we write λ =< 11, 22, . . . , nn > where mi(λ) is the number of parts equal to i . We denote by r(λ) the number of parts of λ (i.e. r(λ) = ∑n i=1mi(λ) ). Recall that the notation λ ` n means that λ is a partition of n . For 1 ≤ k ≤ N , let ek be the k-th elementary symmetric function in the variables x1, . . . , xN , let hk be the sum of all monomials of to...
متن کاملPolynomial Identities for Hypermatrices
We develop an algorithm to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Doklady Mathematics
سال: 2013
ISSN: 1064-5624,1531-8362
DOI: 10.1134/s1064562413050037