A new fourth order Runge-Kutta formula for y′ = Ay with stepsize control
نویسندگان
چکیده
منابع مشابه
A Fourth Order Multirate Runge-Kutta Method with Error Control
To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...
متن کاملParallel iteration of high-order Runge-Kutta methods with stepsize control
This paper investigates iterated Runge-Kutta methods of high order designed in such a way that the right-hand side evaluations can be computed in parallel. Using stepsize control based on embedded formulas a highly efficient code is developed. On parallel computers, the 8th-order mode of this code is more efficient than the DOPR18 implementation of the formulas of Prince and Dormand. The lOth-o...
متن کاملA Linearly Fourth Order Multirate Runge-Kutta Method with Error Control
To integrate large systems of locally coupled ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on the Cash-Karp Runge-Kutta (RK) formula. The order of multirate methods often depends on interpolating certain solution components with a polynomial of sufficiently high degree. By using cubic interpolants and analyzing ...
متن کاملLow-dissipation and low-dispersion fourth-order Runge–Kutta algorithm
An optimized explicit low-storage fourth-order Runge–Kutta algorithm is proposed in the present work for time integration. Dispersion and dissipation of the scheme are minimized in the Fourier space over a large range of frequencies for linear operators while enforcing a wide stability range. The scheme remains of order four with nonlinear operators thanks to the low-storage algorithm. Linear a...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1988
ISSN: 0898-1221
DOI: 10.1016/0898-1221(88)90134-4