A new proximal point iteration that converges weakly but not in norm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factored Value Iteration Converges

In this paper we propose a novel algorithm, factored value iteration (FVI), for the approximate solution of factored Markov decision processes (fMDPs). The traditional approximate value iteration algorithm is modified in two ways. For one, the least-squares projection operator is modified so that it does not increase max-norm, and thus preserves convergence. The other modification is that we un...

متن کامل

Necessary and Sufficient Condition for Mann Iteration Converges to a Fixed Point of Lipschitzian Mappings

Suppose that E is a real normed linear space, C is a nonempty convex subset of E, T : C → C is a Lipschitzian mapping, and x∗ ∈ C is a fixed point of T . For given x0 ∈ C, suppose that the sequence {xn} ⊂ C is the Mann iterative sequence defined by xn 1 1−αn xn αnTxn, n ≥ 0, where {αn} is a sequence in 0, 1 , ∑∞ n 0 α 2 n < ∞, ∑∞ n 0 αn ∞. We prove that the sequence {xn} strongly converges to x...

متن کامل

An implementable proximal point algorithmic framework for nuclear norm minimization

The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact proximal point algorithms in the primal, dual and primal-dual forms...

متن کامل

Picard Iteration Converges Faster than Mann Iteration for a Class of Quasi-contractive Operators

In the last three decades many papers have been published on the iterative approximation of fixed points for certain classes of operators, using the Mann and Ishikawa iteration methods, see [4], for a recent survey. These papers were motivated by the fact that, under weaker contractive type conditions, the Picard iteration (or the method of successive approximations), need not converge to the f...

متن کامل

Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators

The purpose of this paper is to introduce a new class of quasi-contractive operators and to show that the most used fixed point iterative methods, that is, the Picard and Mann iterations, are convergent to the unique fixed point. The comparison of these methods with respect to their convergence rate is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2005

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-05-07719-1