A new upper bound for eigenvalues of the laplacian matrix of a graph

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Upper Bound on the Diameter of a Graph from Eigenvalues Associated with its Laplacian

The authors give a new upper bound for the diameter D(G) of a graph G in terms of the eigenvalues of the Laplacian of G. The bound is

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

a study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension

این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.

Ela a New Upper Bound for the Laplacian Spectral Radius of a Graph

Let G be a simple connected graph with m edges, and the line graph of G with degree sequence t1 ≥ t2 ≥ · · · ≥ tn. This paper presents a new upper bound for the Laplacian spectral radius of G as follows: μ1(G) ≤ min 1≤i≤m {

متن کامل

A lower bound for the Laplacian eigenvalues of a graph—proof of a conjecture by Guo

We show that if μj is the j-th largest Laplacian eigenvalue, and dj is the j-th largest degree (1 ≤ j ≤ n) of a connected graph Γ on n vertices, then μj ≥ dj − j + 2 (1 ≤ j ≤ n− 1). This settles a conjecture due to Guo.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1997

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(96)00592-7