A nilpotence theorem for modules over the mod 2 steenrod algebra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotence in the Steenrod Algebra

While all of the relations in the Steenrod algebra, A, can be deduced in principle from the Adem relations, in practice, it is extremely difficult to determine whether a given polynomial of elements in A is zero for all but the most elementary cases. In his original paper [Mi] Milnor states “It would be interesting to discover a complete set of relations between the given generators of A”. In p...

متن کامل

Unstable modules over the Steenrod algebra revisited

A new and natural description of the category of unstable modules over the Steenrod algebra as a category of comodules over a bialgebra is given; the theory extends and unifies the work of Carlsson, Kuhn, Lannes, Miller, Schwartz, Zarati and others. Related categories of comodules are studied, which shed light upon the structure of the category of unstable modules at odd primes. In particular, ...

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

Global structure of the mod two symmetric algebra , H ∗ ( BO ; F 2 ) , over the Steenrod Algebra

The algebra S of symmetric invariants over the field with two elements is an unstable algebra over the Steenrod algebra A, and is isomorphic to the mod two cohomology of BO , the classifying space for vector bundles. We provide a minimal presentation for S in the category of unstable A-algebras, i.e., minimal generators and minimal relations. From this we produce minimal presentations for vario...

متن کامل

Nilpotence and Torsion in the Cohomology of the Steenrod Algebra

In this paper we prove the existence of global nilpotence and global torsion bounds for the cohomology of any finite Hopf subalgebra of the Steenrod algebra for the prime 2. An explicit formula for computing such bounds is then obtained. This is used to compute bounds for H* (sán ) fer n < 6 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1993

ISSN: 0040-9383

DOI: 10.1016/0040-9383(93)90049-2