A nonlinear spectral approach to surjectivity in Banach spaces
نویسندگان
چکیده
منابع مشابه
Solving Fuzzy Nonlinear Equations in Banach Spaces
In this paper, we suggest and analyze a new two-step iterative method for solving nonlinear fuzzy equations using the Midpoint quadrature rule. The fuzzy quantities are presented in parametric form. Sever examples are given to illustrate the efficiency of the proposed method. Mathematics Subject Classification: 03E72; 37C25
متن کاملA Pythagorean Approach in Banach Spaces
Let X be a Banach space and let S(X)= {x ∈ X , ‖x‖ = 1} be the unit sphere of X . Parameters E(X) = sup{α(x), x ∈ S(X)}, e(X) = inf{α(x), x ∈ S(X)}, F(X) = sup{β(x), x ∈ S(X)}, and f (X) = inf{β(x), x ∈ S(X)}, where α(x) = sup{‖x + y‖2 + ‖x − y‖2, y ∈ S(X)}, and β(x) = inf{‖x + y‖2 + ‖x− y‖2, y ∈ S(X)} are introduced and studied. The values of these parameters in the lp spaces and function spac...
متن کاملOn the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez....
متن کاملThe Nonlinear Geometry of Banach Spaces
We survey some of the recent developments in the nonlinear theory of Banach spaces, with emphasis on problems of Lipschitz and uniform homeomorphism and uniform and coarse embeddings of metric spaces.
متن کاملApproximate a quadratic mapping in multi-Banach spaces, a fixed point approach
Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1975
ISSN: 0022-1236
DOI: 10.1016/0022-1236(75)90037-3