A note on difference matrices over non-cyclic finite abelian groups
نویسندگان
چکیده
منابع مشابه
Finite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملfinite $p$-groups and centralizers of non-cyclic abelian subgroups
a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq z(g)$. in this paper, we give a complete classification of finite $mathcal{cac}$-$p$-groups.
متن کاملA Note on Abelian Groups
Vijayaraghavan and Chowla [2] have proved the following result. If n = 2 or has no primitive root, then there exist suitable reduced residue systems ft, r», • • • , f » and Si, s2, ■ ■ ■ , Sh, where h=in), such that riSi, r2s2, • • • , r^Sh is also a complete residue system (mod n). Since the numbers of a reduced residue system (mod n) form an abelian group with respect to multiplication, it...
متن کاملon finite a-perfect abelian groups
let $g$ be a group and $a=aut(g)$ be the group of automorphisms of $g$. then the element $[g,alpha]=g^{-1}alpha(g)$ is an autocommutator of $gin g$ and $alphain a$. also, the autocommutator subgroup of g is defined to be $k(g)=langle[g,alpha]|gin g, alphain arangle$, which is a characteristic subgroup of $g$ containing the derived subgroup $g'$ of $g$. a group is defined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2016
ISSN: 0012-365X
DOI: 10.1016/j.disc.2015.10.028