A note on difference matrices over non-cyclic finite abelian groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

finite $p$-groups and centralizers of non-cyclic abelian subgroups

a $p$-group $g$ is called a $mathcal{cac}$-$p$-group if $c_g(h)/h$ is ‎cyclic for every non-cyclic abelian subgroup $h$ in $g$ with $hnleq‎ ‎z(g)$‎. ‎in this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{cac}$-$p$-groups‎.

متن کامل

A Note on Abelian Groups

Vijayaraghavan and Chowla [2] have proved the following result. If n = 2 or has no primitive root, then there exist suitable reduced residue systems ft, r», • • • , f » and Si, s2, ■ ■ ■ , Sh, where h=in), such that riSi, r2s2, • • • , r^Sh is also a complete residue system (mod n). Since the numbers of a reduced residue system (mod n) form an abelian group with respect to multiplication, it...

متن کامل

on finite a-perfect abelian groups

‎let $g$ be a group and $a=aut(g)$ be the group of automorphisms of‎ ‎$g$‎. ‎then the element $[g,alpha]=g^{-1}alpha(g)$ is an‎ ‎autocommutator of $gin g$ and $alphain a$‎. ‎also‎, ‎the‎ autocommutator subgroup of g is defined to be‎ ‎$k(g)=langle[g,alpha]|gin g‎, ‎alphain arangle$‎, ‎which is a‎ ‎characteristic subgroup of $g$ containing the derived subgroup‎ ‎$g'$ of $g$‎. ‎a group is defined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2016

ISSN: 0012-365X

DOI: 10.1016/j.disc.2015.10.028