A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction

نویسندگان

چکیده

As vital comments on landslide early warning systems, accurate and reliable displacement prediction is essential of significant importance for mitigation. However, obtaining the desired accuracy remains highly difficult challenging due to complex nonlinear characteristics monitoring data. Based principle “decomposition ensemble”, a three-step decomposition-ensemble learning model integrating ensemble empirical mode decomposition (EEMD) recurrent neural network (RNN) was proposed prediction. EEMD kurtosis criteria were first applied data construction trend periodic components. Second, polynomial regression RNN with maximal information coefficient (MIC)-based input variable selection implemented individual components independently. Finally, predictions aggregated into final The experimental results from Muyubao demonstrate that EEMD-RNN capable increasing outperforms traditional models (including EEMD-support vector machine, EEMD-extreme machine). Moreover, compared standard RNN, gated unit (GRU)-and long short-term memory (LSTM)-based perform better in predicting accuracy. promising

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network

Due to the movement and complexity of the carbon market, traditional monoscale forecasting approaches often fail to capture its nonstationary and nonlinear properties and accurately describe its moving tendencies. In this study, a multiscale ensemble forecasting model integrating empirical mode decomposition (EMD), genetic algorithm (GA) and artificial neural network (ANN) is proposed to foreca...

متن کامل

Atmospheric Lidar Noise Reduction Based on Ensemble Empirical Mode Decomposition

As an active remote sensing instrument, lidar provides a high spatial resolution vertical profile of aerosol optical properties. But the effective range and data reliability are often limited by various noises. Performing a proper denoising method will improve the quality of the signals obtained. The denoising method based on ensemble empirical mode decomposition (EEMD) is introduced, but the d...

متن کامل

Integrating Ensemble Empirical Mode Decomposition and Extreme Learning Machine

A hybrid forecasting model that integrates ensemble empirical model decomposition EEMD , and extreme learning machine ELM for computer products sales is proposed. The EEMD is a new piece of signal processing technology. It is based on the local characteristic time scales of a signal and could decompose the complicated signal into intrinsic mode functions IMFs . The ELM is a novel learning algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11104684