A Novel Hybrid Data-Driven Modeling Method for Missiles
نویسندگان
چکیده
منابع مشابه
A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...
متن کاملA Data-driven Method for Crowd Simulation using a Holonification Model
In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...
متن کاملA Novel Data-driven Image Annotation Method
Image annotation is a promising approach to bridging the semantic gap between low-level features and high-level concepts, and it can avoid the heavy manual labor. Most existing automatic image annotation approaches are based on supervised learning. They often encounter several problems, such as insufficiency of training data, lack of ability in dealing with new concept, and a limited number of ...
متن کاملA data-driven method for modeling pronunciation variation
This paper describes a rule-based data-driven (DD) method to model pronunciation variation in automatic speech recognition (ASR). The DD method consists of the following steps. First, the possible pronunciation variants are generated by making each phone in the canonical transcription of the word optional. Next, forced recognition is performed in order to determine which variant best matches th...
متن کاملapplication of several data-driven techniques for rainfall-runoff modeling
in this study, several data-driven techniques including system identification, adaptive neuro-fuzzy inference system (anfis), artificial neural network (ann) and wavelet-artificial neural network (wavelet-ann) models were applied to model rainfall-runoff (rr) relationship. for this purpose, the daily stream flow time series of hydrometric station of hajighoshan on gorgan river and the daily rai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym12010030