A Novel Localized Meshless Method for Solving Transient Heat Conduction Problems in Complicated Domains

نویسندگان

چکیده

This paper first attempts to solve the transient heat conduction problem by combining recently proposed local knot method (LKM) with dual reciprocity (DRM). Firstly, temporal derivative is discretized a finite difference scheme, and thus governing equation of transfer transformed into non-homogeneous modified Helmholtz equation. Secondly, solution decomposed particular homogeneous solution. And then, DRM LKM are used equation, respectively. The radial basis function collocation merits being simple, accurate, free mesh integration. Compared traditional domain-type boundary-type schemes, present coupling algorithm could be treated as really good alternative for analysis on high-dimensional complicated domains. Numerical experiments, including two- three-dimensional models, demonstrated effectiveness accuracy new methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Meshless Computational Method for Solving Inverse Heat Conduction Problem

In this paper, a new meshless numerical scheme for solving inverse heat conduction problem is proposed. The numerical scheme is developed by using the fundamental solution of heat equation as basis function and treating the entire space-time domain in a global sense. The standard Tikhonov regularization technique and L-curve method are adopted for solving the resultant ill-conditioned linear sy...

متن کامل

A truly meshless method formulation for analysis of non-Fourier heat conduction in solids

The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...

متن کامل

A Wavelet Method for Solving Backward Heat Conduction Problems

In this article, we consider the backward heat conduction problem (BHCP). This classical problem is more severely ill-posed than some other problems, since the error of the data will be exponentially amplified at high frequency components. The Meyer wavelet method can eliminate the influence of the high frequency components of the noisy data. The known works on this method are limited to the a ...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences

سال: 2023

ISSN: ['1526-1492', '1526-1506']

DOI: https://doi.org/10.32604/cmes.2023.024884