A Numerical Method for Solving 3D Elasticity Equations with Sharp-Edged Interfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second order method for solving 3D elasticity equations with complex interfaces

Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector comp...

متن کامل

A simple method for matrix-valued coefficient elliptic equations with sharp-edged interfaces

Keywords: Traditional finite element method Elliptic equation with matrix-valued coefficients Body-fitting grids Sharp-edged interface Symmetric positive definite a b s t r a c t The traditional finite element method has a number of nice properties, and thus it is highly desired for matrix-valued coefficient elliptic equations with sharp-edged interfaces. However , its efficient implementation ...

متن کامل

A numerical method for solving heat equations involving interfaces ∗

In 1993, Li and Mayo [3] gave a finite-difference method with second order accuracy for solving the heat equations involving interfaces with constant coefficients and discontinuous sources. In this paper, we expand their result by presenting a finite-difference method which allows each coefficient to take different values in different sub-regions of the interface. Our method is useful in physic...

متن کامل

A Numerical Method For Solving Ricatti Differential Equations

By adding a suitable real function on both sides of the quadratic Riccati differential equation, we propose a weighted type of Adams-Bashforth rules for solving it, in which moments are used instead of the constant coefficients of Adams-Bashforth rules. Numerical results reveal that the proposed method is efficient and can be applied for other nonlinear problems.

متن کامل

A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order

In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Partial Differential Equations

سال: 2013

ISSN: 2314-6524

DOI: 10.1155/2013/476873