A numerical projection technique for large-scale eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Iterative Projection Methods for Large–scale Nonlinear Eigenvalue Problems
In this presentation we review iterative projection methods for sparse nonlinear eigenvalue problems which have proven to be very efficient. Here the eigenvalue problem is projected to a subspace V of small dimension which yields approximate eigenpairs. If an error tolerance is not met then the search space V is expanded in an iterative way with the aim that some of the eigenvalues of the reduc...
متن کاملNumerical methods for large eigenvalue problems
Over the past decade considerable progress has been made towards the numerical solution of large-scale eigenvalue problems, particularly for nonsymmetric matrices. Krylov methods and variants of subspace iteration have been improved to the point that problems of the order of several million variables can be solved. The methods and software that have led to these advances are surveyed.
متن کاملThe Numerical Treatment of Large Eigenvalue Problems
This paper surveys techniques for calculating eigenvalues and eigenvectors of very large matrices.
متن کاملHarmonic projection methods for large non-symmetric eigenvalue problems
The problem of finding interior eigenvalues of a large nonsymmetric matrix is examined. A procedure for extracting approximate eigenpairs from a subspace is discussed. It is related to the Rayleigh–Ritz procedure, but is designed for finding interior eigenvalues. Harmonic Ritz values and other approximate eigenvalues are generated. This procedure can be applied to the Arnoldi method, to precond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Physics Communications
سال: 2011
ISSN: 0010-4655
DOI: 10.1016/j.cpc.2011.05.016