A Performance-Driven Economic Analysis of a LSTM Neural Network Used for Predicting Building Energy Consumption

نویسندگان

چکیده

Abstract The energy sector occupies a central role in European policy regarding the sustainability and climate change ambitions. This economic gained even more importance context of growing demand threat to security stability Eastern Europe. administrative changes from past years shift towards renewable sources created momentum for general transformation sector. research this field is much needed order find best solutions predict how efficiently satisfy it. purpose paper assess impact using artificial neural networks on dataset that captures information one building about consumption. network follows Long – Short Term Memory architecture it characterized by Root Mean Squared Propagation function optimization. analysis consists comparison performance three activation functions: Rectified Linear Unit, Sigmoid Tanh. results complement existing focusing prediction consumption at level. case study indicates Unit Tanh functions are appropriate than be used an LSTM applied data. former performs better terms accuracy, measured Absolute Value, has similar computational costs Tanh, with slightly larger value training time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neural network approach to predicting urban building energy consumption

`Only for the MLP do we include the hourly weather data as part of the input space, resulting in 25 features. And for the ResNet model, we one-hot encode day of the week and month into our input space, resulting in 41 initial input features. MULTILAYER PERCEPTRON (MLP) Our baseline of comparison is a basic MLP that consists of three fully connected layers, containing a hidden layer with 24 neur...

متن کامل

A Multi-Scenario Zero-Energy Building Techno-Economic Case Study Analysis for a Renovation of a Residential Building

According to the previous pieces of research, the building sector consumes about 40 % of total yield energy and produce one-third of GHG pollution emission. This point shows the significant potential in two aspects of energy optimization and pollution reduction in this field. The purpose of this research as a case study is to construct a residential building and develop the paths for reaching a...

متن کامل

Impacts of Building Insulation on Energy Consumption in Different Climates of Iran: A Cost Analysis

One of the most important energy-saving of building is suitable choice of insulation with regard to the climatic conditions of each region. In this study, the effects of building insulations approved by the Research Center of Way, Housing and Urban Development with regard to the cost of insulation on energy consumption in the region of Yazd, Tehran and Tabriz was evaluated by software Energy Pl...

متن کامل

Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks

Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...

متن کامل

economic optimization and energy consumption in tray dryers

دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... International Conference on Business Excellence

سال: 2023

ISSN: ['2502-0226', '2558-9652']

DOI: https://doi.org/10.2478/picbe-2023-0005