A perturbed version of an inexact generalized Newton method for solving nonsmooth equations
نویسندگان
چکیده
منابع مشابه
Inexact Newton Methods for Solving Nonsmooth Equations
This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We de ne two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and BD-regularity at the solution. We introduce a globally convergent inexact iteration function based method. We discuss implementati...
متن کاملInexact Kleinman-Newton Method for Riccati Equations
In this paper we consider the numerical solution of the algebraic Riccati equation using Newton's method. We propose an inexact variant which allows one control the number of the inner iterates used in an iterative solver for each Newton step. Conditions are given under which the monotonicity and global convergence result of Kleinman also hold for the inexact Newton iterates. Numerical results ...
متن کاملAn Analysis on Local Convergence of Inexact Newton-Gauss Method for Solving Singular Systems of Equations
We study the local convergence properties of inexact Newton-Gauss method for singular systems of equations. Unified estimates of radius of convergence balls for one kind of singular systems of equations with constant rank derivatives are obtained. Application to the Smale point estimate theory is provided and some important known results are extended and/or improved.
متن کاملConvergence of inexact Newton methods for generalized equations
For solving the generalized equation f (x) + F(x) 0, where f is a smooth function and F is a set-valued mapping acting between Banach spaces, we study the inexact Newton method described by ( f (xk)+ D f (xk)(xk+1 − xk)+ F(xk+1)) ∩ Rk(xk, xk+1) = ∅, where D f is the derivative of f and the sequence of mappings Rk represents the inexactness. We show how regularity properties of the mappings f + ...
متن کاملA globally convergent Inexact-Newton method for solving reducible nonlinear systems of equations
A nonlinear system of equations is said to be reducible if it can be divided into m blocks (m > 1) in such a way that the i−th block depends only on the first i blocks of unknowns. Different ways of handling the different blocks with the aim of solving the system have been proposed in the literature. When the dimension of the blocks is very large, it can be difficult to solve the linear Newtoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2012
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-012-9613-7