A phaseless inverse scattering problem for the 3-D Helmholtz equation
نویسندگان
چکیده
منابع مشابه
Phaseless inverse scattering problems in 3 - d
Consider the Schrödinger equation in R with the compactly supported potential q (x) , x ∈ R. The problem of the reconstruction of the function q (x) from measurements of the solution of that equation on a certain set is called “inverse scattering problem”. In this paper we prove uniqueness theorems for some 3-d inverse scattering problems in the case when only the modulus of the complex valued ...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کاملA globally convergent method for a 3-D inverse medium problem for the generalized Helmholtz equation
A 3-D inverse medium problem in the frequency domain is considered. Another name for this problem is Coefficient Inverse Problem. The goal is to reconstruct spatially distributed dielectric constants from scattering data. Potential applications are in detection and identification of explosive-like targets. A single incident plane wave and multiple frequencies are used. A new numerical method is...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn inverse problem for Helmholtz equation
This article is concerned with subsurface material identification for the 2-D Helmholtz equation. The algorithm is iterative in nature. It assumes an initial guess for the unknown function and obtains corrections to the guessed value. It linearizes the otherwise nonlinear problem around the background field. The background field is the field variable generated using the guessed value of the unk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems and Imaging
سال: 2017
ISSN: 1930-8337
DOI: 10.3934/ipi.2017013